Ordering Schemes for Sparse Matrices using Modern
Programming Paradigms

LEONID OLIKER, XTAOYE LI, PARRY HUSBANDS

Lawrence Berkeley National Laboratory
One Cyclotron Rd, Mail Stop 50B-2239
Berkeley, CA 94720 USA

{loliker,xsli,pjrhusbands}@lbl.gov

Abstract

The Conjugate Gradient (CG) algorithm is per-
haps the best-known iterative technique to solve sparse
linear systems that are symmetric and positive def-
inite. In previous work, we investigated the ef-
fects of various ordering and partitioning strategies on
the performance of CG using different programming
paradigms and architectures. This paper makes sev-
eral extensions to our prior research. First, we present
a hybrid (MPI4+OpenMP) implementation of the CG
algorithm on the IBM SP and show that the hybrid
paradigm increases programming complexity with lit-
tle performance gains compared to a pure MPI im-
plementation. For ill-conditioned linear systems, it
is often necessary to use a preconditioning technique.
We present MPT results for ILU(0) preconditioned CG
(PCG) using the BlockSolve9d5 library, and show that
the initial ordering of the input matrix dramatically af-
fect PCG’s performance. Finally, a multithreaded ver-
sion of the PCG is developed on the Cray (Tera) MTA.
Unlike the message-passing version, this implementa-
tion did not require the complexities of special order-
ings or graph dependency analysis. However, only lim-
ited scalability was achieved due to the lack of available
thread level parallelism.

1 Introduction

The ability of computers to solve hitherto in-
tractable problems and simulate complex processes us-
ing mathematical models makes them an indispensable
part of modern science and engineering. Computer
simulations of large-scale realistic applications usually
require solving a set of non-linear partial differential
equations (PDEs) over a finite region, subject to cer-
tain initial and boundary conditions. Structured grids
are the most natural way to discretize such a compu-
tational domain since they are characterized by a uni-
form connectivity pattern. Their regular structure is
also well suited for simple ordering techniques. Unfor-
tunately, complicated domains must often be divided
into multiple structured grids to be completely dis-
cretized, requiring a great deal of human intervention.
Unstructured meshes, by contrast, can be generated
automatically for applications with complex geome-
tries or those with dynamically moving boundaries but

RUPAK BISWAS
NASA Ames Research Center
Mail Stop T27A-1
Moffett Field CA 94035 USA

rbiswas@nas.nasa.gov

at the cost of higher memory requirements. However,
because such meshes are irregularly structured, sophis-
ticated ordering schemes are required to achieve high
performance on leading parallel systems. In this pa-
per, we examine the relationship between the ordering
of unstructured meshes, and the corresponding paral-
lel performance of the underlying numerical solution.

The process of obtaining numerical solutions to
the governing PDEs requires solving large sparse linear
systems or eigen systems defined over the unstructured
meshes that model the underlying physical objects.
The Conjugate Gradient (CG) algorithm is perhaps
the best-known iterative technique to solve sparse lin-
ear systems that are symmetric and positive definite.
The CG algorithm is often used with a preconditioner
for systems that are ill-conditioned. Within each it-
eration of preconditioned CG (PCG), the sparse ma-
trix vector multiply (SPMV) and the inverse of the
preconditioning matrix are usually the most expensive
operations.

Modern computer architectures, based on deep
memory hierarchies, show acceptable performance
only if users care about the proper distribution and
placement of irregularly structured data [1, 8]. Single-
processor performance crucially depends on the ex-
ploitation of locality, and parallel performance de-
grades significantly if inadequate partitioning of data
causes excessive communication and/or data migra-
tion. An intuitive approach would be to use a sophisti-
cated partitioning algorithm, and then to post-process
the resulting partitions with an enumeration strategy
for enhanced locality. Although, in that sense, opti-
mizations for partitioning and locality may be treated
as separate problems, real applications tend to show a
rather intricate interplay of both.

In previous work [9], we investigated the effects
of various ordering and partitioning strategies on the
performance of CG and SPMYV using different pro-
gramming paradigms and architectures. In particu-
lar, we used the reverse Cuthill-McKee [2] and the
self-avoiding walks [4] ordering strategies, and the
METIS [7] graph partitioner. This paper makes sev-
eral extensions to our prior research. We present a
hybrid (MPI+OpenMP) implementation of the CG
algorithm on the IBM SP and show that the hybrid

paradigm increases programming complexity with lit-
tle performance gains compared to a pure MPI im-
plementation. For ill-conditioned linear systems, it
is often necessary to use a preconditioning technique.
We present MPI results for ILU(0) preconditioned
CG (PCQG) using the BlockSolve95 [6] library. Block-
Solve95 graph colors and reorders the input matrix to
achieve high parallelism; however, we found that the
initial ordering of the input matrix dramatically af-
fected PCG’s performance. Finally, a multithreaded
version of the PCG is developed on the Cray (Tera)
MTA. This implementation was dramatically less com-
plex than the BlockSolve95’s PCG, which required ad-
vanced graph dependency analysis and matrix reorder-
ing. However, only limited scalability was achieved
due to the lack of available thread level parallelism.

2 Preconditioned conjugate gradient

The Conjugate Gradient (CG) algorithm is the
oldest and best-known Krylov subspace method used
to solve the sparse symmetric positive definite linear
system Az = b. The convergence rate of CG depends
on the spectral condition number of the coefficient ma-
trix A. For ill-conditioned linear systems, it is often
necessary to use a preconditioning technique. In other
words, the original system is transformed into another
that has the same solution, but with better spectral
properties.

Each iteration of the preconditioned CG
(PCG) [10] involves one sparse matrix-vector product
(SPMYV), one solve with preconditioner, three vector
updates (AXPY), and three inner products (DOT).
For most practical matrices, the SPMV and solve
dominate the other operations.

A preconditioner is any kind of modification to
the original sparse linear system which makes it easier
to solve. One broad class of effective preconditioners is
based on incomplete factorizations of the matrix A. In
this paper, we consider the simplest form of incomplete
factorization, called ILU(0), where all the fill elements
not at the nonzero positions of A are discarded. Com-
pared with the other ILU variants, ILU(0) is computa-
tionally fast and memory efficient. It is quite effective
for a reasonable number of practical matrices.

The TLU(0) method contains two steps. First,
an incomplete LU factorization of A must be created.
This factorization is performed only once, hence its
cost can be amortized. Secondly, the lower and upper
triangular solves with L and U are performed in each
PCG iteration. The triangular solves incur about the
same number of operations as the SPMV Az, because
the sparsity patterns of L and U are identical to the
lower and upper triangular parts of A. However, a par-
allel triangular solve tends to be slower than a parallel
SPMYV, because it has a smaller degree of parallelism.
For SPMV | all the components can be obtained inde-
pendently in parallel. This is not true for a triangular
solve. Figure 1 illustrates the lower triangular solve

Lz = b. The solution of z; depends on all z;, j < 1,
unless l;; = 0. Thus there are more task dependen-
cies than SPMV, even if L is very sparse. The task
dependency graphs change with the matrix ordering;
hence, different orderings have different degrees of par-
allelism.

r=1b
for j =1,n
zj = x;/lj
for each i > j and ;; #0
Ty = X5 — li]'l‘]'

endfor

Figure 1: The lower triangular solve.

3 Partitioning and Linearization

Almost all state-of-the-art computer architec-
tures utilize some degree of memory hierarchy (reg-
isters, cache, main memory) that implies data local-
ity is crucial. Various numberings of the mesh ele-
ments/vertices result in different nonzero patterns of
matrix A which, in turn, cause different access pat-
terns for the entries of the vector x#. Moreover, on
a distributed-memory machine, they imply different
amounts of communication. Some excellent paral-
lel graph partitioning algorithms have been developed
and implemented in the last decade that are extremely
fast while giving good load balance quality and low
edge cuts. With graph partitioning, data locality is
enforced by minimizing interprocessor communication,
but not at the cache level. In this paper, we have used
the popular METIS [7] multilevel partitioner for our
experiments.

Linearization techniques play an important role
in enhancing cache performance. Over the years, spe-
cial numbering strategies have been developed to op-
timize memory usage and locality of sparse matrix
computations. The particular enumeration of the ver-
tices in an finite element method (FEM) discretiza-
tion controls, to a large extent, the sparseness pattern
of the resulting stiffness matrix. The bandwidth, or
profile, of the matrix has a significant impact on the
efficiency of linear systems and eigensolvers. We ex-
amine the performance of the reverse Cuthill-McKee
(RCM) [2]. This algorithm is fairly straightforward
to implement and largely benefits by operating on a
pure graph structure, 1.e., the underlying graph is not
necessarily derived from a triangular mesh.

A Self-Avoiding Walk (SAW) [4] over a triangu-
lar mesh 1s an enumeration of the triangles such that
two consecutive triangles (in the SAW) share an edge
or a vertex, 1.e. there are no jumps in the SAW. It
can be shown that walks with more specialized prop-
erties exist over arbitrary unstructured meshes, and
that there is an algorithm for their construction whose
complexity is linear in the number of triangles in the
mesh. Furthermore, SAWs are amenable to hierar-
chical coarsening and refinement, 1.e. they have to be
rebuilt only in regions where mesh adaptation occurs,

and can therefore be easily parallelized. SAW, unlike
RCM, is not a technique designed specifically for ver-
tex enumeration; thus, it cannot operate on the bare
graph structure of a triangular mesh. This implies a
higher construction cost for SAWs, but several differ-
ent vertex enumerations can be derived from a given

SAW.

4 Experimental results

Our experimental test mesh consists of a two-
dimensional Delaunay triangulation, generated by the
Triangle [11] software package. The mesh is shaped
like the letter “A”, and contains 661,054 vertices and
1,313,099 triangles. The underlying matrix was assem-
bled by assigning a random value in (0, 1) to each (4, j)
entry corresponding to the vertex pair (v;, v;), where
1 < distance(v;, v;) < 3. All other off-diagonal entries
were set to zero. This simulates a stencil computa-
tion where each vertex needs to communicate with its
neighbors that are no more than three edge lengths
away. The matrix is symmetric with its diagonal en-
tries set to 40, which makes it diagonally dominant
(and hence positive definite). This ensures that the
CG algorithm converges successfully. The final sparse
matrix A has approximately 39 entries per row and a
total of 25,753,034 nonzeros. The CG algorithm con-
verges in 13 iterations, with the unit vector as the
right-hand side b and the zero vector as the initial guess
for . For the PCG experiments, the diagonal entries
of the matrix were reduced to 10, thus no longer mak-
ing it diagonally dominant and causing the original CG
to fail. The PCG algorithm successfully converged in
10 iterations, given the modified matrix.

4.1 Hybrid CG results

The latest technological advances have allowed
increasing numbers of processors to have access to a
single memory space 1n a cost effective manner. As
a result, the latest teraflops-scale parallel architec-
tures contain a larger number of networked SMPs.
Pure MPI codes should port easily to these systems,
since message passing is required among the SMP
nodes. However, it is not obvious that message pass-
ing within each SMP is the most effective use of the
system. A recently proposed programming paradigm
combines two layers of parallelism, by implement-
ing OpenMP shared-memory codes within each SMP,
while using MPI among the SMP clusters. This mixed
programming strategy allows codes to potentially ben-
efit from loop-level parallelism in addition to coarse-
grained domain-level parallelism. Although the hy-
brid programming methodology may be the best map-
ping to the underlying architecture, it remains unclear
whether the performance gains of this approach com-
pensate for the increased programming complexity and
the loss of portability.

The hybrid architecture used in our experiments
is the IBM SP system, recently installed at the San
Diego Supercomputing Center (SDSC). The machine

contains 1,152 processors arranged as 144 SMP com-
pute nodes. Each node is equipped with 4 GB of mem-
ory shared among its eight 222 MHz Power3 proces-
sors, and connected via a crossbar. The crossbar tech-
nology reduces bandwidth contention to main mem-
ory, compared to traditional shared-bus designs. Each
Power3 CPU has an L1 (64 KB) cache which is 128-
way set associative, and L2 (4 MB) cache which is four-
way set associative with its own private cache bus. All
the nodes are connected to each other via a switch in-
terconnect using an omega-type topology. Currently,
only four MPT tasks (out of the eight processors) are
available within each SMP when using this fast switch.
Thus, under the current configuration, the user is re-
quired to implement mixed mode programs to utilize
all the processors. The next generation switch will
alleviate this problem.

For the hybrid implementation of the CG algo-
rithm on the IBM SP, we started with the Aztec MPI
library [5] and incrementally added OpenMP paral-
lelization directives. Through the use of profiling, the
key loop nests responsible for significant portions of
the overall execution were identified. A naive paral-
lelization of all loops can be counterproductive since
the overhead of OpenMP can exceed the savings in
execution time. Some reorganization of the code, in-
cluding the use of temporary variables, was necessary
to preserve correctness. In all, eight Aztec loops were
parallelized with OpenMP directives, the most impor-
tant being the SPMV routine. To achieve the best pos-
sible OpenMP performance, dense vector operations
were performed with the threaded vendor-optimized
BLAS from the Engineering and Scientific Subroutine
Library (ESSL).

Table 1 shows the results of the hybrid CG im-
plementation on the SP, for varying numbers of SMP
nodes, MPI tasks, and OpenMP threads. In addition
to the ORIG, METIS, RCM, and SAW orderings, we
present a new hybrid partitioning/linearization scheme
comprised of METIS+SAW(M+S) . Since METIS [7]
is well-suited for minimizing interprocessor commu-
nication and SAW [4] has been demonstrated to en-
hance cache locality, combining these two approaches
is a potentially promising strategy for hybrid architec-
tures. First, the graph is partitioned into the appropri-
ate number of MPI tasks using METIS. Next, a SAW
linearization is applied to each individual subdomain
in parallel. Thus, when multiple OpenMP threads
process their assigned submatrix, the SAW reorder-
ing should improve each processor’s cache performance
and reduce false sharing.

Notice that when there is only one SMP node
and one MPT task, as in {1,1,4} and {1,1,8} (the tu-
ple {x,y,z} denotes {SMP nodes, MPI tasks, OpenMP
threads }), the CG code is effectively parallelized us-
ing only OpenMP; thus, timings are not presented for
the corresponding METIS and METIS4+SAW entries.
Similarly, when the number of OpenMP threads is one,
the parallelization is purely MPI based. Recall that

P S| M| O | ORG | MET | RCM | SAW | M4S
411 1 4 6.47 3.56 3.24
1 2 2 6.84 4.96 3.29 3.01 2.99
1 4 1 7.26 3.99 3.19 2.91 2.90
2 1 2 6.92 4.80 3.25 2.96 2.92
2 2 1 7.65 3.88 3.13 2.82 2.80
4 1 1 7.27 3.87 3.10 2.80 2.77
811 1 8 4.38 2.16 1.99
1 2 4 4.99 2.92 1.99 1.87 1.84
1 4 2 6.03 2.42 1.93 1.81 1.78
2 1 4 4.85 2.76 1.85 1.71 1.67
2 2 2 5.95 2.23 1.75 1.62 1.58
2 4 1 6.14 1.89 1.75 1.59 1.57
4 1 2 5.30 2.12 1.73 1.56 1.53
4 2 1 6.04 1.80 1.68 1.50 1.49
8 1 1 5.55 1.77 1.68 1.51 1.45
16 | 2 1 8 3.37 1.92 1.21 1.13 1.11
2 2 4 4.12 1.36 1.07 1.01 0.99
2 4 2 4.78 1.47 1.08 1.01 1.00
4 1 4 3.68 1.26 0.98 0.92 0.89
4 2 2 4.52 1.07 0.98 0.89 0.88
4 4 1 5.18 0.96 0.98 0.91 0.90
8 1 2 4.15 1.05 0.96 0.89 0.84
8 2 1 4.53 0.90 0.92 0.84 0.82
32 | 4 1 8 2.97 0.87 0.65 0.67 0.61
4 2 4 3.60 0.70 0.61 0.59 0.58
4 4 2 4.06 0.72 1.12 0.68 0.64
8 1 4 3.32 0.62 0.59 0.52 0.50
8 2 2 3.80 0.58 0.59 0.56 0.54
8 4 1 4.26 0.58 0.60 0.58 0.56
64 | 8 1 8 2.99 0.47 0.39 0.39 0.37
8 2 4 3.55 0.45 0.69 0.44 0.40
8 4 2 3.96 0.46 0.79 0.49 0.46

Table 1: Runtimes (in seconds) of CG using different or-
derings on the IBM SP with varying numbers of SMP nodes
(S), MPI tasks (M), and OpenMP threads (O) .

due to limitations in the current switch architecture of
the SDSC’s SP, the maximum number of MPI tasks is
limited to four on each SMP, and hybrid programming
is required to use all the available processors.

The performance of the ordering schemes av-
eraged across all combinations of nodes, tasks, and
threads from best to worst are: METIS+SAW, SAW,
RCM, METIS, and ORIG. The METIS+SAW strat-
egy consistently outperforms all others; however as was
shown in our previous work [9], cache behavior is sig-
nificantly more important than interprocessor commu-
nication for our application. As a result, there is no
significant performance difference between the hybrid
METIS4+SAW strategy and the pure SAW lineariza-
tion. Nonetheless, we expect algorithms with higher
communication requirements to benefit from this dual
partitioning/ordering approach. This will be the sub-
ject of future research. Overall, these results show that
intelligent ordering schemes are extremely important
for efficient sparse matrix computations regardless of
whether the programming paradigm is OpenMP, MPI,
or a combination of both.

To compare hybrid versus pure MPI performance,
first examine the METIS+SAW column since it gives
the best CG runtimes. Each processor set shows dif-
fering results. For example, on 16 processors, the
fastest CG implementation is for {8,2,1}, meaning no
OpenMP parallelization is triggered. However, on
32 processors, {8,1,4} is the fastest, outperforming

ORIG METIS
P TriSolve | PCG | TriSolve | PCG
8 14.08 51.87 9.96 13.17
16 8.01 32.96 3.87 5.32
32 5.98 8.83 1.80 2.56
64 6.12 8.30 0.87 1.28
RCM SAW
P TriSolve | PCG | TriSolve | PCG
8 5.98 8.61 4.86 6.87
16 2.86 4.23 2.74 4.02
32 1.74 2.58 1.31 1.99
64 0.78 1.25 0.81 1.17

Table 2: Runtimes (in seconds) for the triangular solve
and the overall PCG using different orderings on the SP.

{8,4,1}. Finally, on 64 processors, using the maxi-
mum number of OpenMP threads, as in {8,1,8}, gives
the best results. Within each processor set, varying
the number of tasks and threads does not result in
a significant performance difference. Overall, the hy-
brid implementation offers no noticeable advantage.
This is true for the other ordering schemes as well,
as 1s evident from Table 1. However, since the hy-
brid paradigm increases programming complexity and
adversely affects portability, we conclude that for run-
ning iterative sparse solvers on clusters of SMPs, a
pure MPI implementation is a more effective strategy.
A hybrid PCG implementation is not considered in
this paper, and will be the subject of future work.

4.2 Message-passing PCG results

Parallel programming with message passing is
the most common and mature approach for high-
performance parallel systems. The message-passing
PCG experiments in this paper use the Block-
Solve9h [6] software library, which is used for solving
large, sparse linear systems on parallel platforms that
support message-passing with MPI. Although Aztec is
a powerful iterative library, it does not provide a global
ILU(0) factorization routine. For these experiments
we used the IBM SP located at NERSC, which con-
sist of two 200 MHz Power3 processors per SMP node
and is otherwise very similar to SDSC’s SP described
in Section 4.1. BlockSolve95 uses two matrix reorder-
ing schemes to achieve scalable performance. First,
the graph is reduced by extracting cliques and iden-
tical nodes (i-nodes) in the sparse matrix structure,
allowing for the use of higher-level BLAS. Next, the
reduced graph is colored using an efficient parallel col-
oring heuristic. Finally, vertices of the same color are
grouped and ordered sequentially. As a result, during
the triangular solves of the PCG, the unknowns corre-
sponding to these vertices can be solved for in paral-
lel, after the updates from previous color groups have
been performed. The number of colors in the graph
therefore determines the number of parallel steps in
the triangular solve. Since BlockSolve95 reorders the
input matrix, we investigate what effect, if any, our
ordering strategies have on the parallel performance

of PCG.

Table 2 presents the runtimes of the triangular

ORIG METIS
P Color Factorize | Color | Factorize
8 116.68 339.94 48.41 107.20
16 75.63 283.71 20.00 46.90
32 46.96 128.30 10.01 23.26
64 28.08 82.63 5.01 11.41
RCM SAW
P Color Factorize | Color | Factorize
8 37.87 82.53 33.93 75.31
16 19.01 40.02 17.05 37.22
32 9.59 20.19 8.76 19.79
64 5.39 10.48 4.64 9.57

Table 3: Runtimes (in seconds) for BlockSolve95 graph
coloring and matrix factorization using different orderings

on the SP

solve and the total PCG using various ordering strate-
gies. Results clearly show that the initial ordering
of the matrix plays a significant role in PCG perfor-
mance, even though the input matrix is further re-
ordered by the BlockSolve95 library. Notice that the
triangular solve procedure is responsible for the ma-
jority of PCG’s computational overhead, and is also
sensitive to the initial ordering. For the overall PCG
runtime, SAW has a slight advantage over RCM and
METIS; however, all three ordering schemes are about
an order of magnitude faster than ORIG.

The BlockSolve95 graph coloring and ILU(0) ma-
trix factorization times are presented in Table 3.
The initial ordering of the matrix dramatically affects
both these pre-processing steps, with SAW produc-
ing the best results. Notice from Tables 2 and 3 that
the BlockSolve95 library shows scalable performance
across all aspects of the PCG computation when intel-
ligent ordering schemes are used.

4.3 Multithreaded PCG results

Multithreading has received considerable atten-
tion over the years as a promising way to hide memory
latency in high-performance computers, while provid-
ing access to a large and uniform shared memory. Us-
ing multithreading to build commercial parallel com-
puters is a new concept in contrast to the standard
single-threaded microprocessors of traditional super-
computers. Such machines can potentially utilize sub-
stantially more of its processing power by tolerating
memory latency and using low-level synchronization
directives. Cray (formally Tera) has designed and
built a state-of-the-art multithreaded computer called
the MTA, which is especially well-suited for irregular
and dynamic applications. Parallel programmability
is considerably simplified since the user has a global
view of the memory, and need not be concerned with
the data layout.

The Cray MTA is a supercomputer installed
about two years ago at SDSC. The MTA has a
radically different architecture than current high-
performance computer systems. Each 255 MHz pro-
cessor has support for 128 hardware streams, where
each stream includes a program counter and a set of
32 registers. One program thread can be assigned to

P | Trisolve | PCG
1 71.98 80.34
2 45.74 50.02
4 26.94 29.18
8 16.04 17.29

Table 4: Runtimes (in seconds) for the triangular solve
and the overall PCG on the MTA

each stream. The processor switches with no overhead
among the active streams at every clock tick even if
a thread is not blocked, while executing a pipelined
instruction. Previous work [9] presented the CG and
SPMYV implementation on the MTA and showed that
special ordering or partitioning schemes are not re-
quired to obtain high efficiency and scalability.

For the MTA implementation of PCG, we devel-
oped a multithreaded version of the lower and upper
triangular solves (see Figure 1.) Matrix factorization
times are not reported since it is performed only once
outside the inner loop. Our multithreaded strategy
uses low-level locks to effectively perform an on-the-fly
dependency analysis. Recall that to compute the lower
triangular solve Lz = b, the solution of x; depends on
all z; , j < ¢, unless l;; = 0. First, synchronization
locks are applied to all z;, j = 1,2,...n, to guaran-
tee correct dependency behavior. Threads are then
dynamically assigned to solve for each ;. If a given
z; has a dependency on z; which has not yet been
computed, the attempt to access the blocked mem-
ory address of x; will cause the thread responsible for
processing z; to be temporarily put to sleep. Once a
thread successfully solves for x;, the synchronization
lock on that variable is released, causing the runtime
system to wake all blocked threads waiting to access
the memory address of z;. Subsequent attempts to ac-
cess that variable will no longer cause active threads
to become blocked. The lightweight synchronization
of the MTA allows locks to be effectively used at such
a fine granularity. Notice that the multithreaded ver-
sion of triangular solve is dramatically less complex
than the BlockSolve95 implementation described in
Section 4.2, which required advanced graph depen-
dency analysis and matrix reordering to achieve high
parallelism.

Table 4 presents the performance of PCG with
the ORIG ordering on the MTA using 60 streams.
Observe that the triangular solve is responsible for
most of the computational overhead, and achieved a
speedup of approximately 4.5X on eight processors.
This limited scalability is due to the lack of available
thread level parallelism in our dynamic dependency
scheme. A large fraction of the computational threads
were blocked at any given time, preventing a full sat-
uration of the MTA processors. Subsequent attempts
to optimize the multithreaded code by increasing the
number of streams and using more sophisticated or-
derings strategies caused the MTA to crash due to
limitations in its current system software. We plan
to revisit the multithreaded PCG once a more mature
runtime system becomes available on the MTA.

5 Summary and conclusions

In this paper, we examined the performance of
and the programming effort required for the Conju-
gate Gradient (CQG) sparse iterative solver using three
leading programming paradigms. A recently proposed
hybrid programming paradigm combines two layers
of parallelism, by implementing OpenMP shared-
memory codes within an SMP, while using MPI among
the SMP clusters. We developed the CG algorithm on
the IBM SP, by starting with the Aztec [5] MPI library
and incrementally adding OpenMP parallelization di-
rectives. A new hybrid partitioning/linearization
scheme comprised of METIS+SAW was presented,
and consistently outperformed the other ordering
schemes. Comparing hybrid (MPI4+OpenMP) versus
pure MPI implementations of CG, we found no signifi-
cant performance differences between the two schemes.
However, since the hybrid paradigm increases pro-
gramming complexity and adversely affects portabil-
ity, we conclude that for running iterative solvers on
clusters of SMPs, a pure MPI implementation is a
more effective strategy.

For ill-conditioned linear systems, 1t is often nec-
essary to use a preconditioning technique. We pre-
sented MPIT results for ILU(0) preconditioned CG
(PCG) using the BlockSolve95 [6] library. Unlike CG,
the runtime of the PCG algorithm is dominated by the
triangular solves which are inherently less amenable to
parallelization than SPMYV. BlockSolve95 graph colors
and reorders the input matrix to achieve high paral-
lelism; however, we found that the initial ordering of
the input matrix dramatically affected PCG’s perfor-
mance. Overall, the SAW linearization resulted in the
best runtimes for all components of PCG, including
graph coloring and factorization.

Multithreading has received considerable atten-
tion over the years as a promising way to hide mem-
ory latency in high-performance computers, while pro-
viding access to a large and uniform shared mem-
ory. A multithreaded version of the PCG algorithm
was developed on the Cray MTA. Here, the trian-
gular solve uses low-level locks to effectively perform
a graph dependency analysis at runtime. This im-
plementation was dramatically less complex than the
BlockSolve95’s PCG, which required advanced graph
dependency analysis and matrix reordering. However,
only limited scalability was achieved due to the lack of
available thread level parallelism in our dynamic de-
pendency scheme, which prevented a full saturation
of the MTA processors. In future, we plan to revisit
the MTA as a more mature runtime environment be-
comes available and as more processors are added to
the system.

Acknowledgments

The work of the first three authors was supported
by the Director, Office of Computational and Technol-
ogy Research, Division of Mathematical, Information,

and Computational Sciences of the U.S. Department of

Energy under contract number DE-AC03-765SF00098.

References

[1] D. A. BURGESs AND M. B. GILES, Renumbering
unstructured grids to improve the performance of

codes on hierarchical memory machines, Advances
in Engineering Software, 28 (1997), pp. 189-201.

[2] E. CuTHILL AND J. McKEE, Reducing the band-
width of sparse symmetric matrices, Proc. ACM

National Conference, 1969, pp. 157-192.

[3] A. GEORGE, Computer implementation of the fi-
nite element method, Stanford Uniwversity Techni-

cal Report STAN-CS-208, Stanford, CA, 1971.

[4] G. HEBER, R. Biswas, aND G. R. Gao, Self-
avoiding walks over adaptive unstructured grids,

Concurrency: Practice and Experience, 12 (2000),
pp. 85-109.

[5] S. A. HuTcHINSON, L. V. PREvVOsT, J. N. SHA-
DID, AND R. S. TUMINARO, Aztec User’s Guide,
Sandia National Laboratories Technical Report

SANDY5-1559, Albuquerque, NM, 1998.

[6] M. T. JoNEs anD P. E. PrassmanN, Block-
Solve95 User’s Manual: Scalable Library Soft-
ware for the Parallel Solution of Sparse Linear
Systems, Argonne National Laboratory Technical

Report ANL-95/48, Chicago, IL, 1995.

[7] G. Karypis AND V. KUMAR, A fast and high
quality multilevel scheme for partitioning irreg-
ular graphs, SIAM J. Sei. Statist. Comput., 20
(1998), pp. 359-392.

[8] R. LOHNER, Renumbering strategies for
unstructured-grid solvers operating on shared-
memory, cache-based parallel machines, Com-
puter Methods in Applied Mechanics and
Engineering, 163 (1998), pp. 95-109.

[9] L.OLikER, X. L1, G. HEBER, AND R. Biswas
Parallel Conjugate Gradient: Effects of Ordering
Strategies, Programming Paradigms, and Archi-
tectural Platforms 13th International Conference
on Parallel and Distributed Computing Systems,
(2000).

[10] Y. SaaDp, [lterative Methods for Sparse Lin-
ear Systems, PWS Publishing Company, Boston,
MA, 1996.

[11] J. R. SHEwCHUK, Triangle: Engineering a 2d
quality mesh generator and Delaunay triangula-
tor, Applied Computational Geometry: Towards
Geometric Engineering, Lecture Notes in Com-
puter Science, Vol. 1148, Springer-Verlag, Heidel-
berg, Germany, 1996, pp. 203-222.

